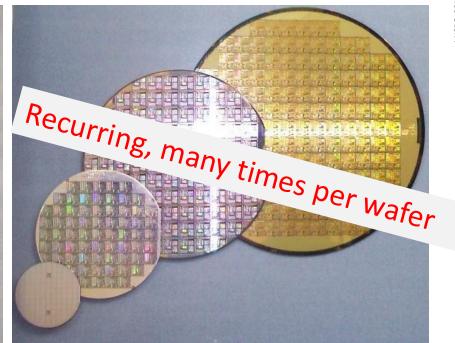


Today - Lithography


```
Key aspects to remember
   Resists
   Writer and projection/mask
   Resolution and throughput
   I ift-off
Industry standard today
Alternative lithography
  Stencil
  Nanoimprint
   microcontact printing
  scanning nanoprobes
```


Thin film deposition Oxidation, CVD, PVD, ...

Patterning of thin film Create structures

Print resolution (document, photos,...)

DPI (dot/in)	dpcm (dot/cm)	Pitch (μm)		
300	118	85		
2540	1000	10		
4000	1575	6		

→ Need much improved resolution to reach micron, sub-micron, 10nm transistors

EPFL

Yellow room (UV-sensitive photoresist)

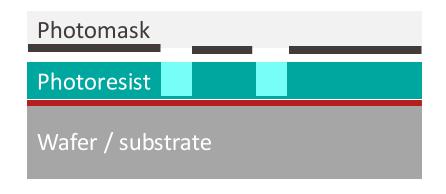
- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping

Wafer / substrat


- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping

Photoresist

Wafer / substrate



- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping

- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping

EPFL

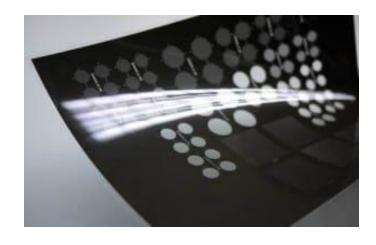
•What is going on in the Photoresist?

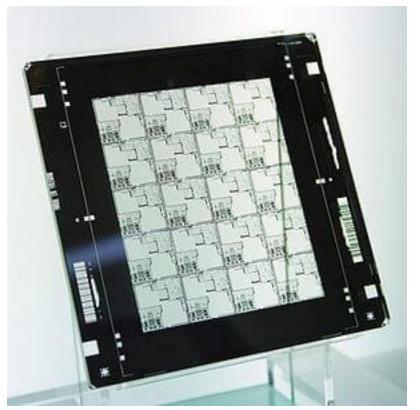


- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping

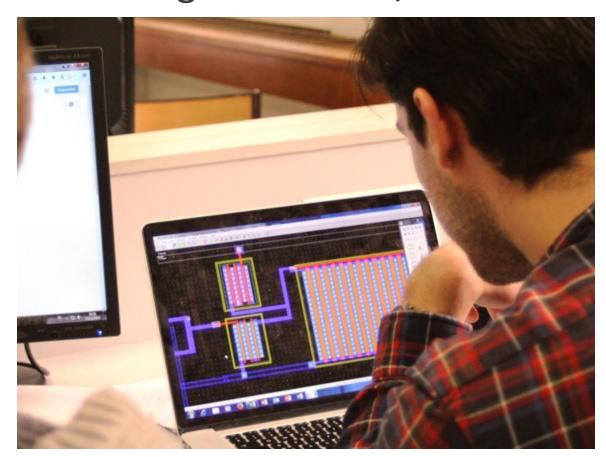
- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping

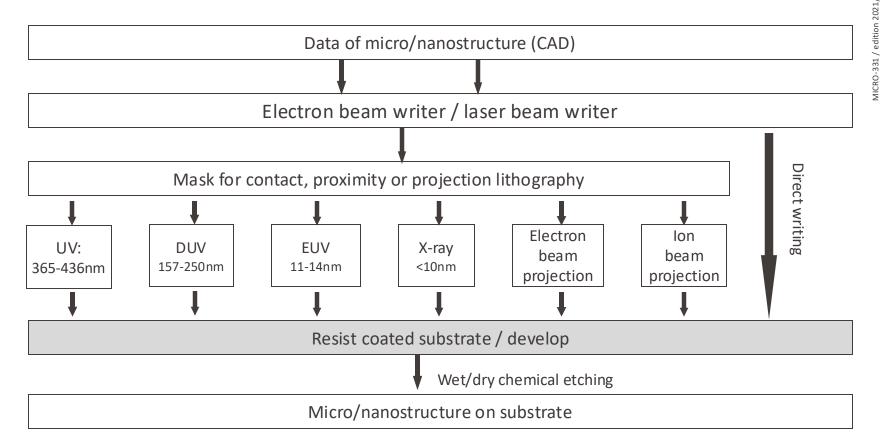
- Substrate preparation
- Resist coating and pre-baking
- Resist exposure
- Resist development
- Pattern transfer (etching, lift-off)
- Resist stripping


Wafer / substrate


Today - Lithography

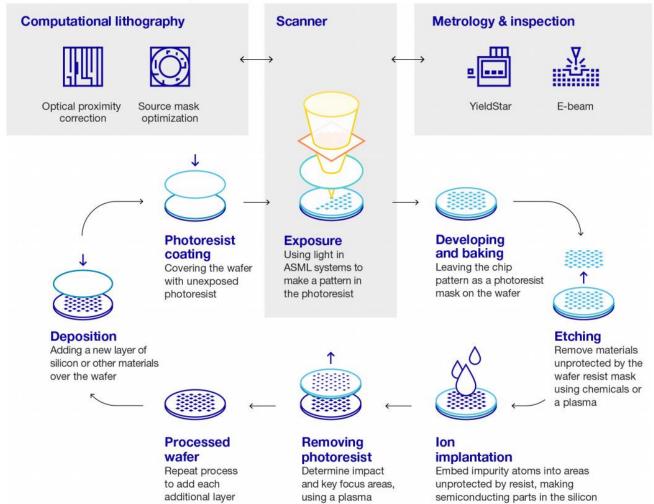
```
Key aspects to remember
   Resists
   Writer and projection/mask
  Resolution and throughput
   I ift-off
Industry standard today
Alternative lithography
  Stencil
  Nanoimprint
   microcontact printing
  scanning nanoprobes
```



How to make a photo mask?

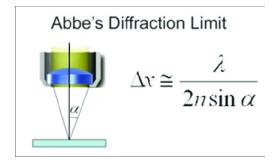


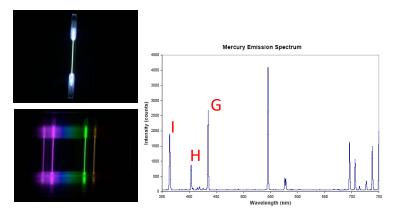
-

From design to a micro/nanodevice



From design to a micro/nanodevice




Semiconductor manufacturing process

Lithography is limited by diffraction

Wavelen gth [nm]	Source	Range			
436	Hg arc lamp	G-line			
405	Hg arc lamp	H-line			
365	Hg arc lamp	I-line			
248 Hg/Xe arc lamp, KrF excimer laser		Deep UV (DUV)			
193 ArF excimer laser		DUV			
157 F2 laser		Vacuum UV (VUV)			
~ 10 Laser-produces plasma sources		Extreme UV (EUV)			
~ 1	X-ray tube, syncrotonon	X-Ray			

Contact and proximity

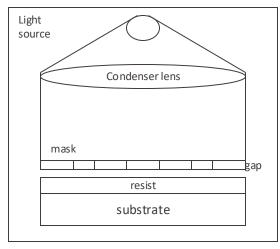

Contact exposure:

- Mask is in physical contact with substrate
- Best resolution (diffraction limited)
- Risk of contamination

Proximity exposure:

- Mask is a few micrometers above the substrate
- Loss in resolution
- No risk of contamination

contact



$$MFS = \sqrt{d \times l}$$

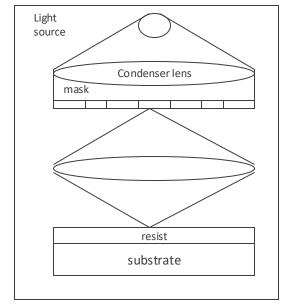
$$d = thickness(resist)$$

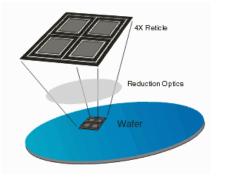
$$l = wavelength$$

proximity

$$MFS \gg \sqrt{(d+g)\times I}$$

 $d = thickness(resist)$
 $g = gap$
 $I = wavelength$


- 1



Projection lithography (DUV stepper)

- Mainly used today for IC industry
- Picture of the mask is projected
- No contact
- No deterioration
- Excellent resolution (reduction e.g. 4x, 5x)
- Reduction of errors
- Stepper, x-y movement, from field to field

Rayleigh criterion says: MFS= $0.61*\lambda/NA$

In microlithography: $MFS=k_1*\lambda/NA$ $k_1=technology\ cte\ (0.5-0.9)$ Non-ideal behavior of equipment Lens error Resist processing, shape, etc.

$$MFS = \sqrt{d \cdot \lambda}$$

$$d = thickness(resist)$$

$$\lambda = wavelength$$

EPFL

Resolution enhancement of Optical Lithography

- Resolution R:
- Depth of Focus DOF:

$$R = k_1 \frac{\lambda}{NA}$$

DOF =
$$k_2 \frac{\lambda}{N\Delta^2}$$

- To decrease R: \rightarrow need to decrease λ and increase NA (stepper)
- But: DOF decreases too
- \rightarrow need to decrease k_1
- k₁ = optical engineering = f(resist, mask, illumination)
- Examples: Optical Proximity correction (OPC), Phase shift mask (PSM), Off-axis illumination (OAI)

2 possible ways to make metal wires

- Deposition of metal + lithography + etching
- Lithography + deposition of metal + resist stripping (lift-off)

Which layer made by litho? 1b

How to break the diffraction limit?

Use Electron-beam lithography

- No photons but electrons
- Primary electrons hit the sample
- Forward scattered
- Travel through the resist with high energy
- Some electrons are back-scattered
- Responsible for the broadening of resist exposure

Today - Lithography

```
Key aspects to remember
   Resists
   Writer and projection/mask
   Resolution and throughput
   Lift-off
Industry standard today
Alternative lithography
  Stencil
  Nanoimprint
  microcontact printing
  scanning nanoprobes
```

Today - Lithography

INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS

 $\begin{array}{c} \text{International} \\ \text{Roadmap} \\ \text{FOR} \\ \text{Devices and Systems}^{^{\text{\tiny TM}}} \end{array}$

2023 UPDATE

LITHOGRAPHY & PATTERNING

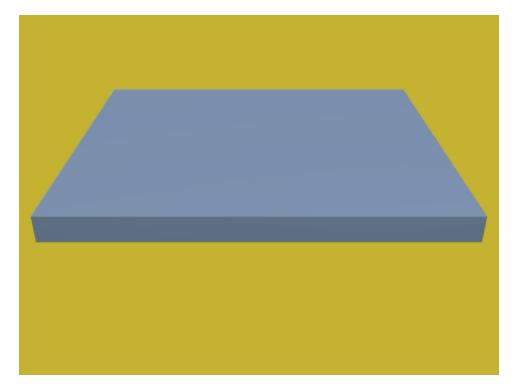
EPFL

Table LITH-1

Lithography Technology Requirements

Tuble LITT-1 Lunography Technology Requirements							
Parameter	2022	2025	2028	2031	2034	2037	
MPU/Logic							
Logic device technology naming [F]	G48M24	G45M20	G42M16	G40M16T2	G38M16T4	G38M16T6	
Logic Industry "Node Range" Labeling	"3nm"	"2nm"	"1.5nm"	"1.0nm eq"	"0.7nm eq"	"0.5nm eq"	
Logic device structure options	FinFETLGAA	LGAA	LGAA	LGAA-3D	LGAA-3D	LGAA-3D	
MPU/ASIC Minimum Metal ½ pitch (nm)	12.0	10.0	8.0	8.0	8.0	8.0	
Metal LWR (nm) [C]	1.8	1.5	1.2	1.2	1.2	1.2	
Metal CD control (3 sigma) (nm) [B]	1.8	1.5	1.2	1.2	1.2	1.2	
Contacted poly half pitch (nm)	24.0	22.5	21.0	20.0	19.0	19.0	
Physical Gate Length for HP Logic (nm)	16.0	14.0	12.0	12.0	12.0	12.0	
Gate LER (nm) [C]	1.1	1.0	0.8	0.8	0.8	0.8	
Gate CD control (3 sigma) (nm) [B]	1.6	1.4	1.2	1.2	1.2	1.2	
Overlay (3 sigma) (nm) [A]	2.4	2.0	1.6	1.6	1.6	1.6	
Metal CDU (nm)	1.8	1.5	1.2	1.2	1.2	1.2	
Metal LER (nm)	1.3	1.1	0.8	0.8	0.8	0.8	
MPU/ASIC finFET fin minimum 1/2 pitch (nm)	12.0						
FinFET Fin width (nm)	5.0						
Fin CD control (3 sigma) (nm) [B]	0.5						
FIN LER (nm) [C]	0.35						
Lateral Gate All Around (LGAA) pitch		26.00	24.00	24.00	23.00	23.00	
LGAA minimum width		7.0	6.0	6.0	6.0	6.0	
LGAA CD control (3 sigma) (nm) [B]		0.7	0.6	0.6	0.6	0.6	
GAA LwR (nm) [C]		0.7	0.6	0.6	0.6	0.6	
MPU/ASIC minimum contact hole pitch (nm)	48	45	42	40	38	38	
MPU/ASIC minimum contact hole CD (nm)	24	23	21	20	19	19	
MPU/ASIC Via pitch	34	28	23	23	23	23	
MPU/ASIC Via half pitch	17	14	11	11	11	11	
MPU/ASIC minimum contact hole or via CDU (nm)	2.55	2.12	1.70	1.70	1.70	1.70	
DRAM							
Dram Minimum 1/2 pitch (nm)	17	14	11	8.4	7.7	7.0	
CD control (3 sigma) (nm) [B]	1.7	1.4	1.1	0.8	0.8	0.7	
Mininum contact/via after etch (nm) [D]	17	14	11	8.4	7.7	7.0	
Minimum contact/via pitch(nm)[D]	51	42	33	25	23	21	
Overlay (3 sigma) (nm) [A]	3.4	2.8	2.2	1.7	1.5	1.4	

Today - Lithography


https://www.asml.com/en/technology/lithography-principles

Today - Lithography

```
Key aspects to remember
   Resists
   Writer and projection/mask
   Resolution and throughput
   Lift-off
Industry standard today
Alternative lithography
  Stencil
  Nanoimprint
  microcontact printing
  scanning nanoprobes
```


Stencil lithography (cartoon)

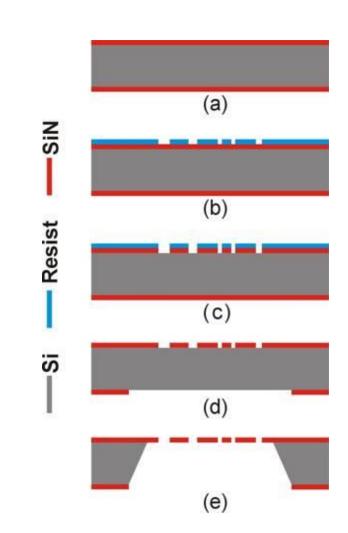
- Patterning without photoresist
- Very small (<100nm)
- Very large (mm)
- Vacuum clean

- Deposition
- Etching
- Implantation

- 1

Stencil fabrication

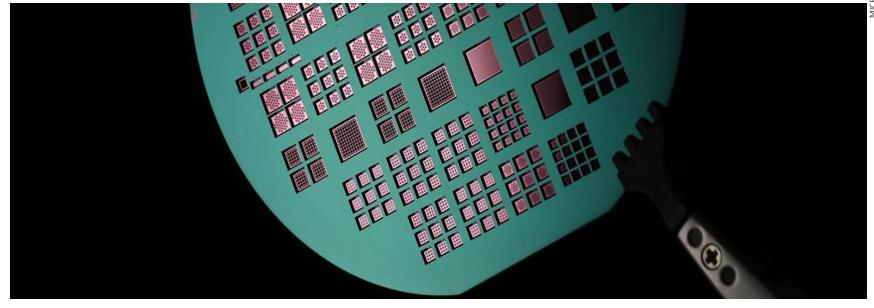
LPCVD 50-500 nm thick SiN


Pattern definition in photoresist

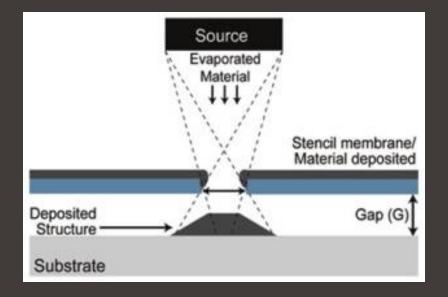
Pattern transfer into SiN

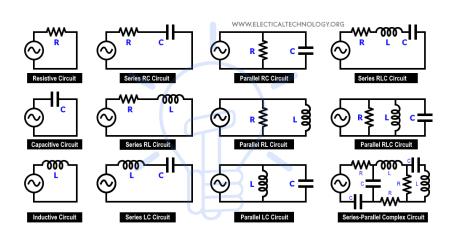
Membrane window definition and KOH etching

Fabrication of nanoscale apertures in membrane by:

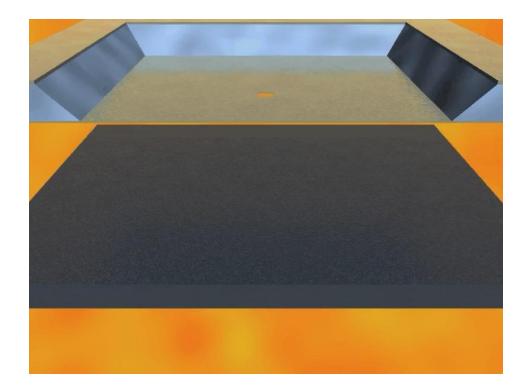

- Focused Ion Beam Milling
- Electron beam lithography
- Laser interference lithography
- Nanoimprint lithography
- Deep UV lithography

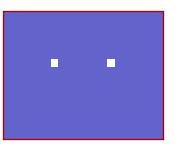
EPFL


Nanostencil



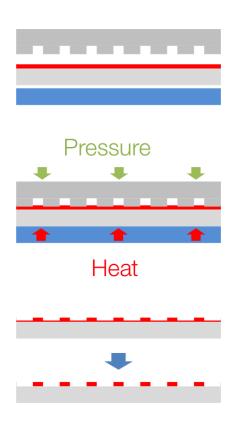
What are the challenges? What are the opportunities?


How to do closed topology?



Dynamic stenciling

Free motion



Today - Lithography

```
Key aspects to remember
   Resists
   Writer and projection/mask
   Resolution and throughput
   Lift-off
Industry standard today
Alternative lithography
   Stencil
  Nanoimprint
  microcontact printing
  scanning nanoprobes
```


Nano-Imprint Lithography

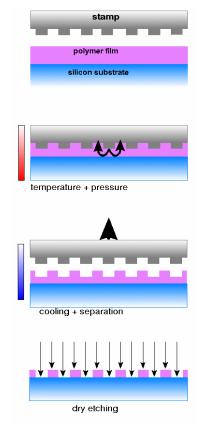
Imprint stack preparation

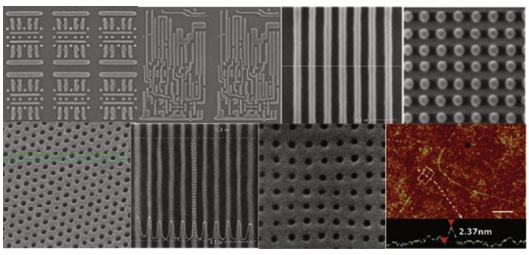
Stamp (or mold), Resist, Substrate, Chuck

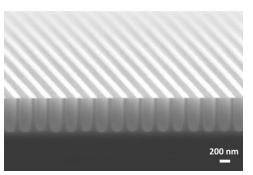
Imprinting

Pressure / temperature / time profile

Separation

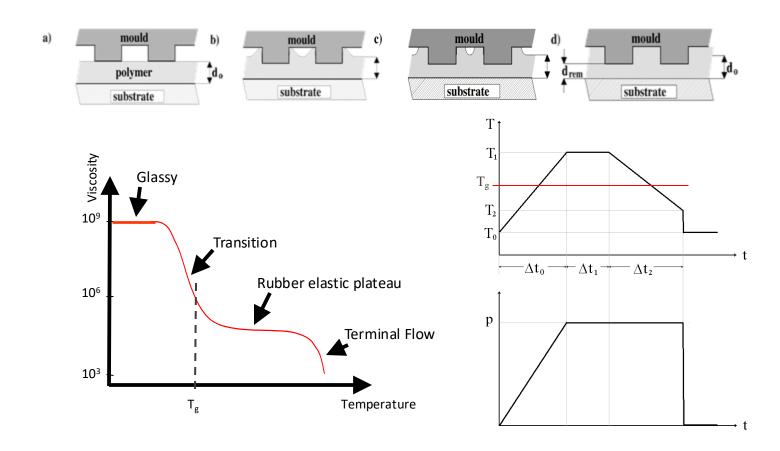

Temp control


Residual layer etch


Remove thin resist layer by O2 plasma

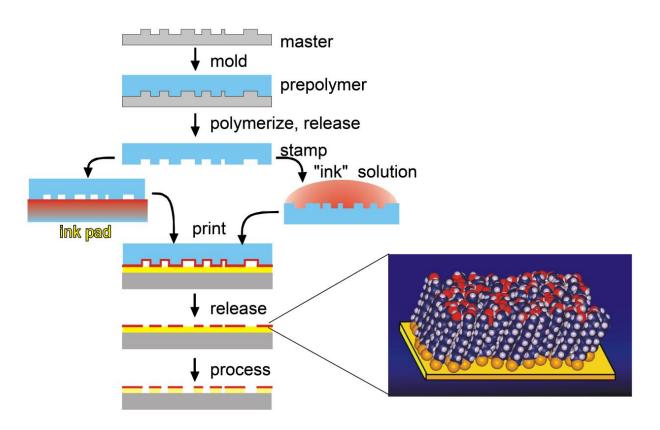
EPFL

Nano-Imprint Lithography



S. Chou et al. *Science 5 April 1996: Vol.* 272 no. 5258 pp. 85-87

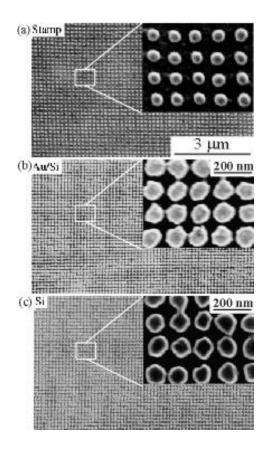
EPFL


Nanoimprint Process Model

-

Microcontact Printing (μCP)

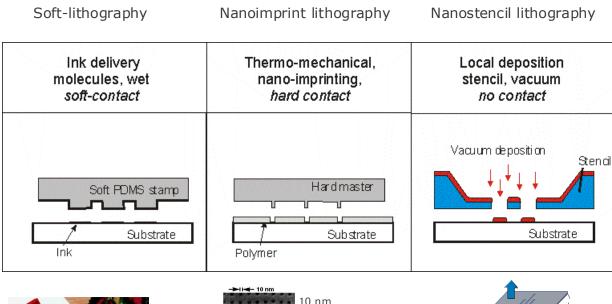
http://zurich.ibm.com

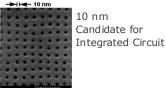


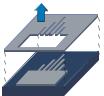
Microcontact Printing

High-resolution μ CP:

- a) Scanning electron micrograph of a stamp with 60 nm dots.
- b) The corresponding gold dots fabricated by printing and etching were slightly broadened due to ink diffusion and substrate roughness.
- c) The gold pattern served as a mask to etch the bare regions 250 nm deep into the underlying silicon by reactive ion etching.


http://zurich.ibm.com




Emerging Nanopatterning Methods

(Replication)

Today - Lithography

```
Key aspects to remember
   Resists
   Writer and projection/mask
   Resolution and throughput
   Lift-off
Industry standard today
Alternative lithography
  Stencil
  Nanoimprint
  microcontact printing
  scanning nanoprobes
```